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Introduction 

Our task has a two-fold aim in regard to the documents at our disposal. The first objective is to 

gain some insights into a huge amount of data without a laborious document by document 

human inspection. This is basically the essence of artificial intelligence via which human tries 

to achieve a high-level understanding of data (intelligence) with tools provided by statistical 

abstraction (artificial). In a second time we have been asked to draw inspiration from the 

aforementioned abstraction process to implement a real-world application: in our case 

document classification, back-end of some downstream products such as recommender 

systems. Both aspects pertain to the domain of information retrieval (see (Manning et al., 2008) 

for a thorough overview). 

 

Reuters-21578 is a benchmark dataset for document classification. To be more precise, it is a 

multi-class (e.g. there are multiple classes), multi-label (e.g. each document can belong to many 

classes) dataset.   

 

The dataset used in our report is the Distribution 1.0 of the Reuters-21578 dataset and it has 

been widely used in text retrieval, machine learning, and other corpus-based research. 

Originally the articles appeared on the Reuters newswire in 1987 and a decade-long effort of 

manual cleanup had been necessary before it was finally made available for comparative 

studies in 1993.  

 

As its name suggests, Reuters-21578 consists of 21578 documents. It’s worth noting that 

although Reuters-21578 is currently the most widely used test collection for text categorization 

research, more large-scale dataset has been made available to the research community. For 

instance, the RCV1 dataset (Lewis et al., 2004) has over 800,000 manually categorized 

newswire stories and the prevalence of Reuters-21578 is likely to be superceded over the next 

few years. 

 

Our task concerns only 5 topics of this large dataset, namely Money/Foreign Exchange 

(MONEY-FX), Shipping (SHIP), Interest Rates (INTEREST), Mergers/Acquisitions (ACQ), 

Earnings and Earnings Forecasts (EARN). 

 

https://martin-thoma.com/document-classification/


The report is divided into 4 parts:  

 

1) in the first part we briefly describe the process of extracting articles, labels and document 

ids of the wanted topics from the original sgm files using the beautiful soup package in Python  

 

2) the second part explains the process of data wrangling which, often overlooked by data 

scientist, consists of a vital step in the whole pipeline of text mining 

 

3) the text analysis part is extensively documented in part 3 where we focus on how the feature 

engineering can benefit from exploratory data analysis (EDA).  

 

4) much attention has been given to the final part where we consider and evaluate 3 

classification algorithms while using Tf-idf vector as a primary feature. 

 

The report ends with a conclusion section where we discuss the most significant findings of 

our work and how the whole pipeline may integrate with other downstream components such 

as search engine.  

 

The whole structure of our report can also be compactly captured in Figure 1 designed by us 

with a product-centered principle.  

 

 

Figure 1 Structure of the report 

 



Part I: Data extraction 

Introduction 

 

The data set used in this study is the Reuters-21578 test collection tagged with topics stored in 

22 SGM files. Markup languages such as SGML are handy for storing and exchanging 

structured data. For our text classification task however, we want to work with Pandas data 

frame object as they are more practical. Furthermore, in our case study, we focus on only 5 

(see above for details) of 135 different topics.  

 

The script related to this part is create_df.py. The output data frame is stored in the file 

reuters.csv. 

Parsing 

The first step is to parse the text as html with Beautiful Soup package to extract the data we 

need. To be more precise, we focus on the following tags in SGM files : NEWID as index, 

LEWISSPLIT as indicator of training/test split in the classification section; all the D tags 

embedded in TOPICS tag as our document labels (notice that D tags could appear in other tags 

like PLACES and there would be zero to several D tags in TOPICS tag); BODY tag as article 

text. The highlighted parts of Figure 2 made with the xml editor oXygen© offers a more 

straightforward display of the desired tags.  

 

An aside on the data extraction: we do not extract TITLE tags because in many cases the little 

text contained in this tag contains the topic keyword, which will oversimplify the task of 

classification. For instance, if we want to classify desserts and main course, it would be too 

easy to build corpus containing these two keywords! 



 

Figure 2 Tags used for data extraction displayed with the software oXygen© 

Also, items like texts of type Brief do not contain any BODY tag. Only TITLE tags are available 

and these items will be discarded in our study.  

 

Considering our task only concerns articles of 5 topics, our data frame only contains instances 

of articles marked at least 1 of 5 topics. A Boolean is used to indicate whether an article is 

labeled as a specific topic and the column multi_topics indicates whether the document has 

multiple labels. Figure 3 provides a nice illustration of the data frame's structure. 

 

Figure 3 Data frame generated after data extraction 

Data Cleanup and export 

The body column contains each article's text and we consider it useful to report some technical 

details related to its processing. 

 

When trying to read file into a UTF-8 string to parse it later as XML, the following error is 

encountered (for file reut2-017.sgm):  

 

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xfc in position 1519554: invalid start 

byte 

 



To solve this problem, we first read the file in binary and iterate over the lines before finally 

decoding each of them in UTF-8.   

 

As elementary pre-processing we made also the following adjustments: 

 

1) create the function clean_text (refer to the code for more details) to lowercase all text 

2) restore contractions like can’t to can not 

3) transform non-word (symbols and punctuation, \W in regular expression) to space 

4) eliminate words containing Reuter|REUTER|reuter 

5) remove special characters &#3 present at the end of many BODY tags 

  

The output of this section is a csv file (reuters.csv) which will be used as input in the 

classification section. 

 

  



Part II: Data wrangling 

Introduction 

 

The script related to this part is named textMining1.py and extensively commented. 

 

In practice, the previous data extraction part is often preceded by a data collection process 

involving sometimes a web-scraping process. The whole data retrieval part represents the most 

upstream part of data science. The term upstream in the oil industry means the drilling and 

pumping of wells. Although this step is essential, the real game changer is nevertheless the data 

wrangling part where the term “text mining” gains its full interpretation.  

 

The Economist in their 6 May 2017 edition gushes: « Data is the new oil ». The data wrangling 

consists of the midstream process empowering the mining process. 

 

Our approach is inspired from a basic scenario of a text retrieval engine optimization. Since 

it’s generally time-consuming to perform a search on every possible document in the database, 

documents are often pre-labeled as belonging to a certain class and as soon as the user query’s 

intention is identified related documents can directly be pulled from the database. 

 

In the same way and under a natural language processing setting, it’s often inefficient to do 

online calculations on documents based on user query. The goal of this part is to create a certain 

API-like data frame useful for late analysis. The final data frame is saved in 

reuters_wrangled.csv. 

 

Design of a Reuters dataset "API" 

 

Each row (instance) of our final data frame (reuter_wrangled hereafter) represents an article. 

The list of columns’ names, datatypes and interpretation is summarized in the following table: 

 

new_id int64 article id 

foc_topics string article label set 



body string raw body text for each article 

money-fx int64 1 or 0 (indicate article's label with 

Boolean) 

ship int64 idem 

interest int64 idem 

earn int64 idem 

multi_topics int64 1 or 0 (indicate if an article has 

multiple labels) 

body_clean string body text with cleanup 

body_sentences string sentences of each article separated by 

\n 

body_token string tokens of the article separated by space 

body_lemma string lemmas of the tokens 

body_lemma_noStop string lemmas of the token which are non 

stopwords 

body_nouns string lemmas of all the nouns 

body_adjectives string lemmas of all the adjectives 

body_verbs string lemmas of all the vers 

body_people string recognized people entities 

body_org string recognized organization entities 

body_quantity string recognized quantity entities 

no_tokens float64 number of tokens for each article 

no_types float64 number of types for each article 

no_lemmas float64 number of lemmas for each article 

avg_wordLength float64 average word length for each article 

avg_sentLength float64 average sentence length for each 

article 

lexical_diversity float64 lexical diversity for each article 

lemma_diversity float64 lemma diversity for each article 

 

Table 1 Structure of the data frame for text analysis task 

In the context of an "API" this table can also be considered as a brief documentation of a 

database for text analysis engineers. As stated above, the advantage of such an approach is 



quite obvious, all the metadata are already stocked in the data frame and each time one does 

not need to recompute the desired information over all the documents (for example a list of 

nouns pertaining to a particular topic) each time he wants to do a specific analysis. We will see 

the benefits of this approach in part 3 dedicated to text analysis but for now let's consider some 

technical details related to columns constructions. 

 

Technical details of reuter_wrangled 

 

We use Spacy as the principal NLP package. It's a relatively new library (2015) compared to 

other tools such as NLTK, TreeTagger and Stanford CoreNLP. The reason for which we use 

this library is that it's fast and light while offering fairly good performance on tokenization, 

lemmatization and named-entity recognition (NER), making it an adequate tool for doing 

exploratory data analysis. 

 

The English models1 used by Spacy are trained on the OntoNotes Release 5.0 corpus2. We use 

the smallest model (en_core_web_sm) to gain even more speed on our computer without GPU 

acceleration. 

 

The lexical diversity for each article is calculated by dividing the number of unique tokens by 

the number of all the tokens. For this calculation we have replaced all the digits (integers and 

floats) in the texts with digitttt to avoid an inflated lexical diversity. 

 

As the structure of the data frame suggests we have extracted the list of three entities for each 

article, namely people, organization and quantities (units). 

 

All the texts are lowercased. Stopwords are removed by joining the Spacy's stopwords set and 

NLTK's stopwords set.  

We also use the Spacy's language model to filter stopwords, the main advantage of the model 

approach is a more fine-grained control filtering of stopwords, which is particularly important 

 

1 see https://spacy.io/models/en for more information. 

2 see https://catalog.ldc.upenn.edu/LDC2013T19 for more information. 

https://spacy.io/models/en
https://catalog.ldc.upenn.edu/LDC2013T19


in the context of NER. For example, all the "Will" will be removed by a hard-coded stopwords 

list. However, a model-based filtering will retain those referring to a person. 

 

The implementation of the whole process is well documented in the "refactor the Reuters 

Corpus" part of textMining1.py. 

 

Elementary statistics based on reuter_wrangled 

Using the generated data frame, it's very straightforward to get subsets of data frame on which 

further analysis can be carried on. For example, the two following lines slice respectively 

articles in topic money-fx with or without other topic labels assigned (thanks to the column 

multi_topics). 

 

sub_df_multi_topic = df[(df['money-fx']==1) & (df['multi_topics']==1)] 

sub_df_single_topic = df[(df['money-fx']==1) & (df['multi_topics']==0)] 

425 articles 

259 articles 

 

It's also really simple to compute general statistics of the data subset. We report some useful 

statistics in this section as a prelude to the more interesting text analysis part. 

 

print(f'total number of articles: {len(df)}') 

Total number of articles: 7175 

 

df['foc_topics'].nunique() 

Number of different combinations across 5 topics in the corpus: 15 combinations 

 

mul_cat_number = len(df[df['multi_topics'] == 1]) 

print(f'articles with multiple categories: {mul_cat_number}') 

Articles with multiple categories: 689 

 

focused_topics = ['money-fx', 'ship', 'interest', 'acq', 'earn'] 

for tp in focused_topics: 

    print(f'topic {tp} : {sum(df[tp])}') 

Number of articles per category: 



topic money-fx: 684 

topic ship: 295 

topic interest: 424 

topic acq: 2210 

topic earn: 3776 

 

gen_stat = 

["no_tokens","no_types","no_lemmas","avg_wordLength","avg_sentLength","lexical_diversi

ty","lemma_diversity"] 

for st in gen_stat: 

    print(f"mean of {st}: {df[st].mean()}") 

 

Mean of number of tokens: 111.12641114982578 

Mean of number of types: 65.67108013937282 

Mean of number of lemmas: 100.12641114982578 

Average word length: 4.530594891842289 

Average sentence length: 17.043065870307068 

 

For reasons of concision we will omit the code for the following statistics, all the 

implementations being documented in the "general statistics" part of textMining1.py. 

 

Average lexical diversity: 0.5554329744947362 

Average lemma diversity: 0.5381094987104804 

 

 

 

 

 

 

 

 

 

  



Part III: Text analysis 

Introduction 

 

This part is the "meat" of text analysis. The main goal is to explore some possibly useful 

features for the text classification task of Part IV. 

 

The most common model for representing a document is the so-called bag-of-words model 

which represents the document as a sequence of words (sometimes n-gram) without 

considering the relation among the words and the order of each word in the document. This 

apparently simple model is widely used in text classification.  

 

In this part we start by exploring some other characteristics with our reuters_wrangled data 

frame. Then we will look at which kind of words are most useful for differentiating one topic 

from another. 

 

It turns out that general lexical statistics fail to differentiate documents of the different 5 topics. 

Most common words perform relatively well and most common entities perform the best. 

 

The file used in this part is reuters_wrangled.csv and the code is saved documented in 

textMining2.py. 

 

General lexical statistics 

 

In this section we will try to answer the following question: 

 

Which of the following statistic differentiate the best articles of different topics? 

 

▪ Average number of tokens? 

▪ Average word length? 

▪ Average sentence length? 

▪ Diversity score? 



We report the statistics of average number of tokens here: 

average number of tokens of money-fx: 

216.58479532163742 

average number of tokens of ship: 

168.9864406779661 

average number of tokens of interest: 

194.78537735849056 

average number of tokens of acq: 

129.0606334841629 

average number of tokens of earn: 

73.50741525423729 

 

It is obvious that different topics have different average number of tokens. However, it is also 

obvious that this discrepancy is not related to the intrinsic properties of different topics. What 

about average word length? 

average word length of money-fx: 

4.828710762173928 

average word length of ship: 

4.847260778651526 

average word length of interest: 

4.671278803330707 

average word length of acq: 

4.924477542885329 

average word length of earn: 

4.21560819394405 

 

Except earn, no notable difference can be found across topics. Figure 4 confirms our findings. 



 

Figure 4 Word length distribution across topics 

  

An investigation into sentence length distribution again reveals the peculiarity of the earn 

subset. However, a distinction across all topics is still impossible with this parameter. 

 

 

Figure 5 Sentence length distribution across topics 

The lexical diversity score reveals again the same pattern. Actually the 3 parameters seem 

correlated and can be merged into 1 feature. 

 



 

Figure 6 Lexical diversity score across topics 

Common 'words' and entities 

 

General lexical statistics seem not satisfying for topics differentiation. This is rather in 

accordance with the wide use of bag-of-words model in text classification. But the simple 

statement of using words to differentiate document doesn't answer the question 'which words'. 

This section explores two possible categories of words: most common words and most 

common entities. 

 

The following figure shows the 10 most common words in each topic. 



 

 

Figure 7 Most common words across topics 

It is easy to see that some of the most common words do shed some insights to the document's 

nature.  

 

Semantics of gulf, iran and oil are related to the topic shipping, bank, currency and exchange 

are easily correlated to foreign exchange. This is the same case for all the other topics. In other 

terms, some of the commonest words are associated semantically with the corresponding topics. 

 



However, it is also important to recognize that abundance of some terms is due to factors 

unrelated to topics. For example, words like say, mln (million) are common in all topics and 

words like vs, year are unlikely to indicate the topic of a document. 

 

So what about most common entities? 

 

 

  

 

Figure 8 Wordclouds of most common people names in each topic 

Figure 8 shows the most common people entities in each topic. Although not apparent for 

people with no domain-specific knowledge, some entities do indicate the nature of the topic. 

For instance Donald Trump is closely related to documents under the topic acquisition. 

 

This correlation is much more visible if we take other entities, especially quantities. 



 

 

Figure 9 Wordclouds of most common quantities across 4 topics 

In summary we show the viability of the bag-of-words model and the insufficiency of other 

general lexical statistics. However various words, although useful, overlap across topics, 

suggesting need for some more sophisticated features, which is going to be explained in the 

part IV. 

  



Part IV: Text classification 

Introduction 

 

An Automatic Text Classification task can be implemented through a “rules system”, explicitly 

defined by a “domain expert”, or by Machine Learning systems. 

 

Machine Learning (ML) is the ideal solution in our case where a large set of previously 

classified texts is available — a so-called “training corpus”: the corpus is supplied to the ML 

system, which “learns” autonomously what are the best strategies for classifying documents. 

In the case of binary classification, we just ask a yes/no type of question. If there are multiple 

possible answers and only one to be chosen, then it’s multiclass classification. In our case, we 

can’t really select only one label, some articles contain multiple topics like [‘money-fx’, 

‘interest’]. However, most of widely known algorithms are designed for a single label 

classification problem. Discriminative multi-class classification techniques, including SVMs, 

have historically been developed to assign an instance to exactly one of a set of classes that are 

assumed to be disjoint. In contrast, multi-labeled data, by its very nature, consists of highly 

correlated and overlapping classes (Godbole & Sarawagi, 2004). In this case study, three 

models for multi-label classification available in scikit-multilearn library are described for the 

5-topic Reuters-21578 News classification: 

Method Model Description 

Problem 

transformation 

Binary 

Relevance 

An ensemble of single-label binary 

classifiers is trained independently on the 

original dataset to predict a membership to 

each class 

Problem 

transformation 

Label 

Powerset 

Map each combination of labels into a single 

label and trains a single label classifier 

Problem adaption MLkNN 
For each instance in the test set, its K nearest 

neighbors in the train set are identified. 

Table 2 3 models for multi-label classification available in scikit-multilearn library 



 

Datasets 

 

We use the Mod-Apte split and evaluate all methods on the given train/test split with 5 classes. 

Our dataset includes 4, 948 documents for training and 1, 977 for test (214 documents with 

NOT-USED tag are discarded). Split processing is led by values in train_test column in our 

data frame.  

Steps 

We firstly import the reuters.csv as data frame. 

 

Before training the classifier, we have to represent and weight every document with respect to 

the set of textual features. We apply tokenization and stemming to text in column body before 

which stop words are removed. Furthermore, any string that contains other than letters is 

removed.  

 

Afterwards, TFIDF Vectorizer is used to create a sparse matrix of weighted words. The TFIDF 

Vectorizer weights the words or features by importance regarding the data set or corpus. This 

weight is determined by calculating the frequency of the term, TF, and multiplying it by the 

“Inverse Document Frequency”, or IDF. The “Inverse Document Frequency” is calculated by 

taking the log of the number of articles divided by the number of articles the word is located 

in. 

 

Figure 10 Formula of Tf-idf computation 

This step was taken to discard words that are not relevant to the articles or words that will skew 

the results because they appear in almost every article.  TFIDF method is applied to x_train 

and x_test data. 

 

We have also y_train and y_test with multi label binarizer manually created as 5 columns in 

our data frame.  



In order to train the classifier, we use BinaryRelevance classification with an sklearn.svm.SVC 

base classifier which supports sparse input in the scikit-learn package; LabelPowerset multi-

label classifier with LogisticRegression; MLkNN with a fixed number of neighbors which is 10. 

 

Figure 11 Pipeline of the classification task 

Scores 

After applied the training models above, we compare the results. For selecting the best model, 

we measured: 

 

F1 score which is the harmonic mean of precision and recall, 

 

And Hamming loss which represents the fraction of labels incorrectly predicted: 

 F1 score Hamming loss 

Br_classifier 0.622 0.112 

Lp_classifier 0.768 0.093 

Ml_classifier 0.831 0.066 

 

To sum up, popular methods for multilabel classification were described and compared on 

Reuters newswire. The best results were obtained for MLkNN model, by building uses k-

NearestNeighbors find nearest examples to a test class and uses Bayesian inference to select 

assigned labels. In future work, the order of labels could be shuffled and tested, which is time 

consuming process. 

 

Classifier training and testing

Binary Relevance; Label Powerset; MLkNN Evaluate the performance of the models for test data

Feature set generation

  

Document Preprocessing

Tokenization Stemming Remove stop words
Elimination of Insignificant 

terms

TFIDF Vectorizer



Conclusion 

In this report we have achieved what we call the pipeline of a full-stack data analyst of text.  

 

We have explored different features (lexical and semantic) useful to represent a document. The 

validity of the bag-of-words model is assessed using these features. 

 

In the text classification task, we explore 3 different classifiers in order to handle the multi-

label classification problem. Two approaches of problem transformation have been adopted. It 

turns out that the MLkNN classifier provides the best F1 score (0.831) with the lowest 

Hamming loss (0.066). Thus this classifier fits best to the demands of the current classification 

task.  

 

Needless to say, this work is far from perfect. But the preliminary results obtained by our efforts 

offer already many possible downstream applications. Particularly this pipeline can serve as a 

backend to a search engine interface recommending similar documents to a topic identified 

thanks to some user's input query. 
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